Value Functions, Optimization, and Performance Evaluation in Stochastic Network Models∗

نویسنده

  • Sean Meyn
چکیده

This paper concerns control and performance evaluation for stochastic network models. Structural properties of value functions are developed for controlled Brownian motion (CBM) and deterministic (fluid) workload-models, leading to the following conclusions: Outside of a null-set of network parameters, (i) The fluid value-function is continuously differentiable. Under further minor conditions, the fluid value-function satisfies the derivative boundary conditions that are required to ensure it is in the domain of the extended generator for the CBM model. Exponential ergodicity of the CBM model is demonstrated as one consequence. (ii) The fluid value-function provides a shadow function for use in simulation variance reduction for the stochastic model. The resulting simulator satisfies an exact large deviation principle, while a standard simulation algorithm does not satisfy any such bound. (iii) The fluid value-function provides upper and lower bounds on performance for the CBM model. This follows from an extension of recent linear programming approaches to performance evaluation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid Optimization Algorithm for Learning Deep Models

Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...

متن کامل

A Hybrid Optimization Algorithm for Learning Deep Models

Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...

متن کامل

An Inexact-Fuzzy-Stochastic Optimization Model for a Closed Loop Supply Chain Network Design Problem

The development of optimization and mathematical models for closed loop supply chain (CLSC) design has attracted considerable interest over the past decades. However, the uncertainties that are inherent in the network design and the complex interactions among various uncertain parameters are challenging the capabilities of the developed tools. The aim of this paper, therefore, is to propose a n...

متن کامل

Effects of Probability Function on the Performance of Stochastic Programming

Stochastic programming is a valuable optimization tool where used when some or all of the design parameters of an optimization problem are defined by stochastic variables rather than by deterministic quantities. Depending on the nature of equations involved in the problem, a stochastic optimization problem is called a stochastic linear or nonlinear programming problem. In this paper,a stochasti...

متن کامل

Efficiency evaluation of wheat farming: a network data envelopment analysis approach

Traditional data envelopment analysis (DEA) models deal with measurement of relative efficiency of decision making units (DMUs) in which multiple-inputs consumed to produce multiple-outputs. One of the drawbacks of these models is neglecting internal processes of each system, which may have intermediate products and/or independent inputs and/or outputs. In this paper some methods which are usab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004